104 research outputs found

    An Annotated Corpus for Machine Reading of Instructions in Wet Lab Protocols

    Full text link
    We describe an effort to annotate a corpus of natural language instructions consisting of 622 wet lab protocols to facilitate automatic or semi-automatic conversion of protocols into a machine-readable format and benefit biological research. Experimental results demonstrate the utility of our corpus for developing machine learning approaches to shallow semantic parsing of instructional texts. We make our annotated Wet Lab Protocol Corpus available to the research community

    iGPSe: A Visual Analytic System for Integrative Genomic Based Cancer Patient Stratification

    Full text link
    Background: Cancers are highly heterogeneous with different subtypes. These subtypes often possess different genetic variants, present different pathological phenotypes, and most importantly, show various clinical outcomes such as varied prognosis and response to treatment and likelihood for recurrence and metastasis. Recently, integrative genomics (or panomics) approaches are often adopted with the goal of combining multiple types of omics data to identify integrative biomarkers for stratification of patients into groups with different clinical outcomes. Results: In this paper we present a visual analytic system called Interactive Genomics Patient Stratification explorer (iGPSe) which significantly reduces the computing burden for biomedical researchers in the process of exploring complicated integrative genomics data. Our system integrates unsupervised clustering with graph and parallel sets visualization and allows direct comparison of clinical outcomes via survival analysis. Using a breast cancer dataset obtained from the The Cancer Genome Atlas (TCGA) project, we are able to quickly explore different combinations of gene expression (mRNA) and microRNA features and identify potential combined markers for survival prediction. Conclusions: Visualization plays an important role in the process of stratifying given population patients. Visual tools allowed for the selection of possibly features across various datasets for the given patient population. We essentially made a case for visualization for a very important problem in translational informatics.Comment: BioVis 2014 conferenc

    GRAPHIE: Graph Based Histology Image Explorer

    Get PDF
    BACKGROUND: Histology images comprise one of the important sources of knowledge for phenotyping studies in systems biology. However, the annotation and analyses of histological data have remained a manual, subjective and relatively low-throughput process. RESULTS: We introduce Graph based Histology Image Explorer (GRAPHIE)-a visual analytics tool to explore, annotate and discover potential relationships in histology image collections within a biologically relevant context. The design of GRAPHIE is guided by domain experts' requirements and well-known InfoVis mantras. By representing each image with informative features and then subsequently visualizing the image collection with a graph, GRAPHIE allows users to effectively explore the image collection. The features were designed to capture localized morphological properties in the given tissue specimen. More importantly, users can perform feature selection in an interactive way to improve the visualization of the image collection and the overall annotation process. Finally, the annotation allows for a better prospective examination of datasets as demonstrated in the users study. Thus, our design of GRAPHIE allows for the users to navigate and explore large collections of histology image datasets. CONCLUSIONS: We demonstrated the usefulness of our visual analytics approach through two case studies. Both of the cases showed efficient annotation and analysis of histology image collection

    NON PARAMETRIC CELL NUCLEI SEGMENTATION BASED ON A TRACKING OVER DEPTH FROM 3D FLUORESCENCE CONFOCAL IMAGES

    Get PDF
    International audience3D cell nuclei segmentation from fluorescence microscopy images is a key application in many biological studies. We propose a new, fully automated and non parametric method that takes advantage of the resolution anisotropy in fluorescence microscopy. The cell nuclei are first detected in 2D at each image plane and then tracked over depth through a graph based decision to recover their 3D profiles. As the tracking fails to separate very close cell nuclei along depth, we also propose a corrective step based on an intensity projection criterion. Experimental results on real data demonstrate the efficacy of the proposed method

    Improvements to Response-Surface Based Vehicle Design Using a Feature-Centric Approach

    Get PDF
    Abstract. In this paper, we present our vision for a framework to facilitate computationally-based aerospace vehicle design by improving the quality of the response surfaces that can be developed for a given cost. The response surfaces are developed using computational fluid dynamics (CFD) techniques of varying fidelity. We propose to improve the quality of a given response surface by exploiting the relationships between the response surface and the flow features that evolve in response to changes in the design parameters. The underlying technology, generalized feature mining, is employed to locate and characterize features as well as provide explanations for feature-feature and feature-vehicle interactions. We briefly describe the components of our framework and outline two different strategies to improve the quality of a response surface. We also highlight ongoing efforts
    corecore